» Linear Trigonometric Equations – Worked Solutions

Unit 12 – Trigonometric Identities & Equations

Program Items: 12(c)

Questions: 1. 2sinA = -1
$$\{0^{c} \le A \le 2\pi^{c}\}$$
2. 3cosB - 1 = 0
$$\{|B| \le \pi^{c}\}$$
3. sec²C = 2
$$\{0^{c} \le C \le 2\pi^{c}\}$$
4. 2tanD - $\sqrt{12}$ = 0
$$\{|D| \le \pi^{c}\}$$
5. sin²Fcos²F = $\frac{1}{16}$
$$\{0^{c} \le E \le 2\pi^{c}\}$$

1. $2\sin A = -1 \{0^c \le A \le 2\pi^c\}$

The first step is to have the trigonometric function by itself on the left hand side.

$$2\sin A = -1$$
$$\sin A = \frac{-1}{2}$$

This can be solved by looking at the unit circle (shown at right). The points that make up the circumference of the unit circle have the co-ordinates (cosA, sinA). In other words, if we are searching for the angle A such that $\sin A = \frac{-1}{2}$, we are searching for the points on the unit circle whose y-values are $\frac{-1}{2}$. These two points, $A_1 \& A_2$, are marked on the unit circle at right.

The angles that will give us this result are shown with arrows. Since $\angle A_1OW = \angle EOA_2 = 30^{\circ} \left(\frac{\pi^c}{6}\right)$, we can see that:

- the smaller answer is $210^{\circ} \left(\frac{7\pi^c}{6}\right)$, and
- the larger answer is $330^{\circ} \left(\frac{11\pi^{c}}{6}\right)$.

2. $3\cos B - 1 = 0\{|B| \le \pi^c\}$

The first step in answering this question is the same as the previous question.

$$3\cos B - 1 = 0$$
$$3\cos B = 1$$
$$\cos B = \frac{1}{3}$$

But from here, the question differs in two ways.

Firstly, there is no 'standard' angle that will give $\cos B = \frac{1}{3}$. This means we will have to use a calculator to evaluate the basic angle that we will then put into our solution (this can be done by typing $\cos^{-1}\left(\frac{1}{3}\right)$). Secondly, the domain of the question is defined differently. Though it is shown here with an absolute value sign, this domain can also be expressed as $\{-\pi^c \le B \le \pi^c\}$. The way this changes the answer can again be seen on the unit circle. Since $\cos B = \frac{1}{3}$, we are searching the points on the unit circle whose x-values are $\frac{1}{3}$. $B_1 & B_2$ have again been marked accordingly.

The angles that will give us this result are shown with arrows. Since $\angle EOB_1 = \angle EOB_2 = 70^{\circ}32'$ (1.23°), we can see that:

- the answer above the x-axis is 70°32' (1.23°), and
- the answer below the x-axis is $-70^{\circ}32'$ (-1.23°).

$sec^2C = 2 \{0^c \le C \le 2\pi^c\}$

This question begins with the trigonometric function isolated on the left already – but this particular function is not very useful to us as we find the solution! So it needs to be simplified.

$$sec^{2}C = 2$$

$$\frac{1}{\cos^{2}C} = 2$$

$$cos^{2}C = \frac{1}{2}$$

$$cosC = \pm \frac{1}{\sqrt{2}}$$

The basic angle that solves this trigonometric equation is $45^{\circ} \left(\frac{\pi^c}{4}\right)$. This can be seen on the unit circle at right. However, instead of producing two solutions, the equation above produces four solutions because of the ±. Thinking in terms of the "ASTC" acronym and the four quadrants, the effect of the \pm is to produce a solution in every single quadrant. The four angles that will give us the desired result are shown with arrows. Since $\angle EOC_1 = \angle WOC_2 = \angle WOC_3 = \angle EOC_4 = 45^{\circ} \left(\frac{\pi^c}{4}\right)$, we can see that:

- the first answer is $45^{\circ} \left(\frac{\pi^c}{4}\right)$,
- the second answer is $135^{\circ} \left(\frac{3\pi^{c}}{4}\right)$
- the third answer is $225^{\circ} \left(\frac{5\pi^c}{4}\right)$, and the fourth answer is $315^{\circ} \left(\frac{7\pi^c}{4}\right)$.

$2 \tan D - \sqrt{12} = 0 \{ |D| \le \pi^c \}$

We begin by simplifying:

$$2tanD - \sqrt{12} = 0$$

$$2tanD = \sqrt{12}$$

$$2tanD = 2\sqrt{3}$$

$$tanD = \sqrt{3}$$

Remember that tan refers to the ratio between sin and cos – in the context of the unit circle, this means the gradient. We can see this on the unit circle on the right, where the gradient of intervals D₁O and D_2O are both equal to $\sqrt{3}$.

The angles that will give us this result are shown with arrows. Since $\angle EOD_1 = \angle WOD_2 = 60^{\circ} \left(\frac{\pi^c}{3}\right)$, we can see that:

- the answer above the x-axis is $60^{\circ} \left(\frac{\pi^{c}}{3}\right)$, and
- the answer below the x-axis is $-120^{\circ} \left(\frac{-2\pi^{c}}{3}\right)$.

$\sin^2 F \cos^2 F = \frac{1}{16} \{ 0^c \le F \le 2\pi^c \}$

This question is the only in the set to require the use of a true trigonometric identity:

$$sin^{2}Fcos^{2}F = \frac{1}{16}$$

$$sinFcosF = \pm \frac{1}{4}$$

$$2sinFcosF = \pm \frac{1}{2}$$

$$sin(2F) = \pm \frac{1}{2}$$

$$tet G=2F$$

$$sinG = \pm \frac{1}{2}$$

The identity used in this question is that $2\sin F \cos F = \sin(2F)$. To find F, we must first find G, which we can then halve to find the solutions we need. The basic angle of G is $30^{\circ} \left(\frac{\pi^c}{6}\right)$, which means that the basic angle of F will be 15° $\left(\frac{\pi^c}{12}\right)$. The solutions for G are shown as G1 through G4, while the solutions for F are shown as F₁ through F₄.

Since $\angle EOF_1 = \angle WOF_2 = \angle WOF_3 = \angle EOF_4 = 15^{\circ} \left(\frac{\pi^c}{12}\right)$, we can see that:

- the first answer is $15^{\circ} \left(\frac{\pi^c}{12} \right)$,
- the second answer is $165^{\circ} \left(\frac{11\pi^{\circ}}{12}\right)$,
- the third answer is $195^{\circ} \left(\frac{13\pi^{c}}{12}\right)$, and the fourth answer is $345^{\circ} \left(\frac{23\pi^{c}}{12}\right)$.

